A System of Biquadratic Diophantine Equations

Sarita
Department of Mathematics PDM University Bahadurgarh
E-mail: sarita.malik1281@gmail.com

Abstract

In this paper, I solve $x^{4}+y+1-x y z=0, x^{4}+y^{3}-$ $y^{2}+y-1+x y z=0$ completely and study a pair of simultaneous biquadratic Diophantine equations (1) $x /\left(y^{4}+1\right)$ and $y /\left(x^{4}+1\right)$, where x and y are positive integers. The main result in this paper is that there exist an infinite number of sequences such that x and y satisfy (1) if and only if they are consecutive terms of one of these sequences.

1. INTRODUCTION

Many interesting results have been obtained for the equation $z=\frac{g 2(x, y)}{g 1(x, y)}$ where $g 1(x, y)$ and $g 2(x, y)$ are special quadratic polynomials. These are due to Barnes, Goldberg, and Mills. There may be an infinity of comparatively trivial solutions but only a finite number of possible values for z . For this z we have a quadratic equation $\mathrm{z} g 2(x, y)=g 1(x, y)$.The values of x and y are either finite in number or, if not can be found from a Pell equation or by a recursive algorithm. The equation $x^{2}+y^{2}+1-x y z=0$, equivalently $x / y^{2}+1$ and $y / x^{2}+1$ has positive integral solutions $(\mathrm{x}, \mathrm{y})=\left(\mathrm{u}_{\mathrm{n}}, \mathrm{u}_{\mathrm{n}+1}\right)$ where u sequence is $\ldots ., 13,5,2,1,1,2,5,13, \ldots \ldots \ldots$ With $z=3$. This sequence consists of alternate terms of the Fibonacci sequence $1,1,2$, $3,5,8,13, \ldots$.The equation $x^{2}+y^{2}+x+y+1=x y z, \mathrm{x}>0$, $\mathrm{y}>0$ has solution (x, y), the two consecutive terms of sequence $1,1,3,15, \ldots$ Where $\mathrm{u}_{\mathrm{n}}=5 \mathrm{u}_{\mathrm{n}-1}-\mathrm{u}_{\mathrm{n}-2}-1$, while the equation $x^{2}+y^{2}-x-y+1=x y z, \mathrm{x}>0, \mathrm{y}>0$ has only solution $\mathrm{x}=\mathrm{y}$ $=1$.

Mordell [6] has shown that $a x^{3}+b y^{3}+c=x y z$, where a, b, c are integers and has an infinite number of solutions with $(\mathrm{x}, \mathrm{y})=1$. The solutions (x, y) can be given as polynomials in a,b,c. In this paper I find all integrals solutions for the equation $x^{4}+y+1-x y z=0$. I also prove that the equation $x^{4}+y^{3}-y^{2}+y-1+x y z=0$, has an infinite number of solutions in positive integers. Finally I have shown the existence of an infinite number of sequences such that x, y satisfy $x /\left(y^{4}+1\right)$ and $y /\left(x^{4}+1\right)$, if and only if they are consecutive terms of one of these sequences.

DEFINITION. A sequence of positive integers $\left\{u_{i}\right\}$ with at least three terms $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \ldots$. in which any three consecutive terms satisfy the relation $u_{n-1} \cdot u_{n+1}=u_{n}{ }^{4}+1$, is called a 1 chain. I will consider two chains $\left\{u_{i}\right\},\left\{v_{i}\right\}$ same iff there exists an h such that either $u_{n}=v_{h-n}$ for all n.

THEOREM 1. Two positive integers x and y satisfy $x /\left(y^{4}+\right.$ 1) and $y /\left(x^{4}+1\right)$, iff they are consecutive terms of a 1 chain. Furthermore, any two consecutive terms of a 1 chain determine it completely.
Proof. Let x and y be two positive integers satisfying $x /\left(y^{4}+\right.$ 1) and $y /\left(x^{4}+1\right)$

Then there exists a unique positive integer r such that $\mathrm{xr}=$ $y^{4}+1$. Now $\mathrm{xr} \equiv 1(\bmod y)$ and hence $x^{4} \equiv \mathrm{x}^{4}\left(r^{4}+1\right) \equiv$ $\mathrm{x}^{4}+1 \equiv 0(\bmod y)$.Furthermore, $(\mathrm{x}, \mathrm{y})=1$ implies that $\left(r^{4}+1\right) \equiv 0(\bmod y)$. Thus $\mathrm{y} / r^{4}+1$ and $\mathrm{r} / y^{4}+1$

Continuing like this we obtain a sequence \qquad x, y,r. such that any two consecutive terms u_{n}, u_{n+1} of this sequence satisfy $u_{n} / u_{n+1}^{4}+1$ and $u_{n+1} / u_{n}^{4}+1$ and any three consecutive term u_{n}. ${ }_{1}, \mathbf{u}_{\mathrm{n}}, \mathrm{u}_{\mathrm{n}+1}$ satisfy
$u_{n-1} . u_{n+1}=u_{n}^{4}+1$. Hence x and y are consecutive terms of a 1 chain. From the above discussion it is clear that any two consecutive terms of a 1 chain determine it completely. Converse is discussed on same lines.

2. ANALYSIS

THEOREM 2. The solutions of the Diophantine equation $x^{4}+y+1-x y z=0$ in integers are given by $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(1,1,3)$ and ($-1,-2,0$).

Proof. Consider equation $x^{4}+y+1-x y z=0$, where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are integers we have $x / y+1$ and $y / x^{4}+1$ this implies $x y /\left(x^{4}\right.$ $+1)(y+1)=x^{4} y+x^{4}+y+1$ whence $x y / x^{4}+y+1$, hence ther exists a positive integer z such that $x^{4}+y+1=x y z$ or $x^{4}+y+1-$ $x y z=0$. For finding solution of $x^{4}+y+1-x y z=0$, we must solve system $x / y+1$ and $y / x^{4}+1$. Suppose that $x / y+1$ and y / x^{4} +1 then we have two positive integers r and s such that
$r x=y+1$
(3) and
sy $=x^{4}+1$
From (3) and (4) it implies s. $(x x-1)=x^{4}+1$
Write (5) as $x\left(r s-x^{3}\right)=s+1$
Put rs- $x^{3}=n$, we get $x n=s+1$ then
$\mathrm{x}^{3}=\mathrm{rs}-\mathrm{n}=\mathrm{r}(\mathrm{xn}-1)-\mathrm{n}=\mathrm{rxn}-\mathrm{r}-\mathrm{n}=\mathrm{rxn}-(\mathrm{n}+\mathrm{r})$

$$
\begin{array}{ll}
\Rightarrow & r n>x^{2} \\
\Rightarrow & r n>x
\end{array}
$$

suppose $r n=x^{2}+k$, where k is a positive integer
put $\mathrm{rn}=\mathrm{x}^{2}+\mathrm{k}$ in (6)
$x^{3}=x\left(x^{2}+k\right)-(n+r)$,
$\mathrm{xk}=\mathrm{n}+\mathrm{r}$ then it follows
$(\mathrm{n}-1)(\mathrm{r}-1)+\left(\mathrm{x}^{2}-1\right)(\mathrm{k}-1)=2$
$n r-n-r+1+x^{2} k-x^{2}-k+1=2$
$x^{2} k+2-x k=2$
$\mathrm{xk}(\mathrm{x}-1)+2=2$, provided $\mathrm{xk}(\mathrm{x}-1)=0 \Rightarrow \mathrm{x}=0,1$ but $\mathrm{k} \neq 0$ because k is positive integer ,thus three possibilities are there
$(\mathrm{n}-1)(\mathrm{r}-1)=0$ or $\left(\mathrm{x}^{2}-1\right)(\mathrm{k}-1)=2$
$(\mathrm{n}-1)(\mathrm{r}-1)=2$ or $\left(\mathrm{x}^{2}-1\right)(\mathrm{k}-1)=0$
$(\mathrm{n}-1)(\mathrm{r}-1)=1$ or $\left(\mathrm{x}^{2}-1\right)(\mathrm{k}-1)=1$
From equation (7) $n=1$ or $r=1$ and $x^{2}-1=2$ or $k-1=1 \Rightarrow x^{2}=$ 3 , not possible or if $x^{2}-1=1$ or $k-1=2 \Rightarrow x^{2}=2$, notpossible, so from equation (7) no solution exists.

From equation (8)
$(\mathrm{n}-1)(\mathrm{r}-1)=2$ and $\left(\mathrm{x}^{2}-1\right)(\mathrm{k}-1)=0$
$\mathrm{n}-1=2$ or $\mathrm{r}-1=1$ and $\mathrm{x}^{2}-1=0$ or $\mathrm{k}-1=0$
or $\mathrm{n}-1=1, \mathrm{r}-1=2$ and $\mathrm{x}^{2}=1$ or $\mathrm{k}=1$
$\mathrm{n}=3$ or $\mathrm{r}=2$ and $\mathrm{x}= \pm 1$ or $\mathrm{k}=1$
Case 1. When $\mathrm{x}=1$ and $\mathrm{k}=1$ then $\mathrm{x}^{2}+\mathrm{k}=2$ but $\mathrm{x}^{2}+\mathrm{k}=\mathrm{rn}=>\mathrm{rn}$ $=2 \Rightarrow r=1, n=2$ or $n=1, r=2$

But $\mathrm{y}=\mathrm{rx}-1 \Rightarrow \mathrm{y}=1 \mathrm{x} 1-1=0$ or $\mathrm{y}=2 \mathrm{x} 1-1=1$, so we get (x, y) $=(1,0),(1,1)$ put $(\mathrm{x}, \mathrm{y})=(1,0)$ in equation $x^{4}+y+1-x y z$ $=0 \Rightarrow 1+0+1-0=0$ i.e. $2=0$ incompatible situation so rejected.

Put $(\mathrm{x}, \mathrm{y})=(1,1)$ in equation $x^{4}+y+1-x y z=0$ then $1+1+1-\mathrm{z}=0=>\mathrm{z}=3$, so only solution is $(1,1,3)$
Case 2. When $x=-1$ then $x^{2}+k=2 \Rightarrow r=1, n=2$ or $n=1, r=2$
Subcase 1. When $\mathrm{x}=-1$ and $\mathrm{r}=1$ then $\mathrm{y}=\mathrm{rx}-1 \Rightarrow \mathrm{y}=2$ so from equation $x^{4}+y+1-x y z=0$, we have $1-2+1-2 z=0 \Rightarrow$ $\mathrm{z}=0$ so $(-1,-2,0)$ is another solution.

Subcase 2. When $\mathrm{x}=-1$ and $\mathrm{r}=2$ then $\mathrm{y}=\mathrm{rx}-1 \Rightarrow \mathrm{y}=-3$ so from equation $x^{4}+y+1-x y z=0$, we have $1-3+1-3 z=0=>$ $\mathrm{z}=-1 / 3$ so rejected.
From equation (9)
$(\mathrm{n}-1)(\mathrm{r}-1)=1$ and $\left(\mathrm{x}^{2}-1\right)(\mathrm{k}-1)=1$
$\mathrm{n}-1=1, \mathrm{r}-1=1$ and $\mathrm{x}^{2}-1=1, \mathrm{k}-1=1$
$\mathrm{n}=2, \mathrm{r}=2$ and $\mathrm{x}^{2}=2, \mathrm{k}=2$ not possible so rejected.

THEOREM 3. The Diophantine equation $x^{4}+y^{3}-y^{2}+$ $y-1+x y z=0 ; \mathrm{x}>0, \mathrm{y}>0$ has an infinite number of integral solutions.

Proof. Let $x=x_{1}$ and $y=y_{1}$ be a positive integral solution of given equation. Let $x=1, y=1$ is one such solution. It is easy to see that (x, y) is a solution if and only if $\mathrm{x} \mid y^{3}-y^{2}+y-1$ and $y \mid x^{4}-1$.
Claim. If $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is a solution then $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is another solution where $\mathrm{x}_{2}=\left(y^{3}-y^{2}+y-1\right) \mid \mathrm{x}_{1}$ and $\mathrm{y}_{2}=\left(x^{4}-1\right) \mid \mathrm{y}_{1}$ Clearly $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is different from $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
Since $x_{1} \mid y_{1}{ }^{3}-y_{1}{ }^{2}+y_{1}-1$ and $y_{1} \mid x_{1}{ }^{4}-1$
We have $\mathrm{x}_{2}=\mathrm{y}_{1}{ }^{3}-\mathrm{y}_{1}{ }^{2}+\mathrm{y}_{1}-1 / \mathrm{x}_{1}$ an integer.
Further $x_{2} \mid y_{1}{ }^{3}-y_{1}{ }^{2}+y_{1}-1$
whence $\left(x_{2}, y_{1}\right)=1$
From $x_{2} x_{1} \equiv 1\left(\bmod y_{1}\right)$
We get $\mathrm{x}_{1}{ }^{4}\left(\mathrm{x}_{2}{ }^{4}+1\right) \equiv\left(\mathrm{x}_{1} \mathrm{x}_{2}\right)^{4}+\left(\mathrm{x}_{1}\right)^{4} \equiv\left(\mathrm{x}_{1}\right)^{4}+1 \equiv 0\left(\bmod \mathrm{y}_{1}\right)$
Since $\left(x_{2}, y_{1}\right)=1$, it follows that $y_{1} \mid x_{2}{ }^{4}+1$ and hence $y_{2}=x_{2}{ }^{4}$ $+1 / y_{1}$ is an integer and $y_{2} \mid x_{2}^{4}+1$
Again $\mathrm{y}_{1} \mathrm{y}_{2} \equiv 1\left(\bmod \mathrm{x}_{2}\right)$
$\Rightarrow y_{1}{ }^{3}\left(y_{2}{ }^{3}-y_{2}{ }^{2}+y_{2}-1\right) \equiv y_{1}{ }^{3} y_{2}{ }^{3}-y_{1}{ }^{3} y_{2}{ }^{2}+y_{1}{ }^{3} y_{2}-y_{1}{ }^{3} \equiv 1-$ $y_{1}+y_{1}{ }^{2}-y_{1}{ }^{3} \equiv 0\left(\bmod x_{2}\right), \quad$ using equation (11)
\Rightarrow Since $\left(x_{2}, y_{1}\right)=1$ and $x_{2} \mid y_{2}{ }^{3}-y_{2}{ }^{2}+y_{2}-1$
\Rightarrow Hence $\left(x_{2}, y_{2}\right)$ is a solution.
\Rightarrow COROLLARY 3.1. If $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is a solution of equation $x^{4}+y^{3}-y^{2}+y-1+x y z=0 ; \mathrm{x}>0, \mathrm{y}>0$ then $\left(\mathrm{x}_{0}\right.$, $\left.\mathrm{y}_{0}\right)$ is also a solution where $\mathrm{x}_{0}=\mathrm{y}_{0}{ }^{3}-\mathrm{y}_{0}{ }^{2}+\mathrm{y}_{0}-1 / \mathrm{x}_{1}$ and y_{0} $=\mathrm{x}_{1}{ }^{4}+1 / \mathrm{y}_{1}$

EXAMPLE. Take $(1,1)$ as solution of $x^{4}+y^{3}-y^{2}+y-$ $1+x y z=0$, then using theorem 3
$x_{2}=y_{1}{ }^{3}-y_{1}{ }^{2}+y_{1}-1 / x_{1}=0$ and $y_{2}=x_{2}{ }^{4}+1 / y_{1}=2$
From $(1,1)$ we get $(0,2)$ as solution and using corollary3.1 we get $x_{0}=y_{0}{ }^{3}-y_{0}{ }^{2}+y_{0}-1 / x_{1}$ and
$\mathrm{Y}_{0}=\mathrm{x}_{1}{ }^{4}+1 / \mathrm{y}_{1} \Rightarrow \mathrm{y}_{0}=2$ and $\mathrm{x}_{0}=5$. Thus $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(5,2)$ is a solution obtained from (1,1). Therefore repeated application of theorem 3 and corollary 3.1 yield <- $(5,2)<-(1,1)->(0,2)$->
OPEN PROBLEM. Is there exist any pair (x, y) such that $\mathrm{x} \mid y^{3}-y^{2}+y-1$ and $\mathrm{y} \mid x^{4}-1$, which can be obtained from $(1,1)$ by using theorem 3 and its corollary.

REFERENCES

[1] E. S. BARNES, On the diophantine equation $x 2+y 2+c=x y z$, J. London Math. Sot. 28 (1953), 242-244.
[2] K. GOLDBERG, M. NEWMAN, E. G. STRAUS, AND J. D. Swn-r, The representation of integers by binary quadratic rational forms, Arch. Math. 5 (1954), 12-18.
[3] W. H. M~Ls, A system of quadratic diophantine equations, Pacific J. Math. 3 (1953), 209-220.
[4] W. H. MILIS, Certain diophantine equations linear in one unknown, Can. J. Math. 8 (1956), 5-12.
[5] W. H. MILLS, A method for solving certain diophantine equations, Proc. Amer. Math. sot. 5 (1954), 473-475.
[6] L. J. MORDELL, The congruence $\mathrm{a} 2+\mathrm{by} 3+\mathrm{c}=0(\bmod \mathrm{xy})$ and integer solutions of cubicequations in three variables, Acta Math. 88 (1952), 77-83.
[7] L. J. MORDELL, "Diophantine Equations," pp. 293-300, Academic Press, New York, 1969.
[8] E.G. STRAUS AND J. D. SWIFT, The representation of integers by certain rational forms.

